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Abstract After learning an event’s outcome, people’s recol-
lection of their former prediction of that event typically shifts
toward the actual outcome. Erdfelder and Buchner (Journal of
Experimental Psychology: Learning, Memory, and Cognition,
24, 387–414, 1998) developed a multinomial processing tree
(MPT) model to identify the underlying processes contribut-
ing to this hindsight bias (HB) phenomenon. More recent
applications of this model have revealed that, in comparison
to younger adults, older adults are more susceptible to two
underlying HB processes: recollection bias and reconstruction
bias. However, the impact of cognitive functioning on these
processes remains unclear. In this article, we extend the MPT
model for HB by incorporating individual variation in cogni-
tive functioning into the estimation of the model’s core pa-
rameters in older and younger adults. In older adults, our
findings revealed that (1) better episodic memory was associ-
ated with higher recollection ability in the absence of outcome
knowledge, (2) better episodic memory and inhibitory control
and higher working memory capacity were associated with
higher recollection ability in the presence of outcome knowl-
edge, and (3) better inhibitory control was associated with less
reconstruction bias. Although the pattern of effects was

similar in younger adults, the cognitive covariates did not
significantly predict the underlying HB processes in this age
group. In sum, we present a novel approach to modeling
individual variability in MPT models. We applied this ap-
proach to the HB paradigm to identify the cognitive mecha-
nisms contributing to the underlying HB processes. Our re-
sults show that working memory capacity and inhibitory
control, respectively, drive individual differences in recollec-
tion bias and reconstruction bias, particularly in older adults.

Keywords Multinomial processing treemodels . Hindsight
bias . Individual differences . Cognitive functioning

Our current knowledge state influences the certainty with
which we view the past. This hindsight bias (HB) phenome-
non typically results in a retrospective tendency to overesti-
mate the predictability of prior events. Research has indicated
that HB has important implications for practical and profes-
sional decision-making (e.g., Arkes, Wortman, Saville, &
Harkness, 1981; Harley, 2007; Leary, 1981). For example,
HB may result in people overlooking reasons for why an
outcome occurred, potentially resulting in a failure to learn
from negative outcomes and overconfidence in future
decision-making (see Pezzo & Pezzo, 2007). Given literature
suggesting age-related declines in deliberate decision-making
processes (Peters, Hess, Vastfjall, & Auman, 2007), older
adults may be particularly vulnerable to decision-making er-
rors that stem from HB. However, HB has been relatively
unexplored within the context of aging, with only a handful of
studies to date (Bayen, Erdfelder, Bearden, & Lozito, 2006;
Bernstein, Erdfelder, Meltzoff, Perria, & Loftus, 2011; Coolin,
Bernstein, Thornton, & Thornton, 2014; Groß & Bayen, in
press). Understanding older adults’ susceptibility to HB and
how HB impacts independent decision-making will be critical
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to the development of tools to facilitate decision-making in
older adults.

In the existing aging literature, researchers have assessed
HB using amemory judgment task (Hell, Gigerenzer, Gauggel,
Mall, & Müller, 1988), which involves participants providing
original judgments (OJ) to almanac questions (e.g., “How long
is the Nile River?”). Later, they learn the correct answers
(referred to as correct judgments or CJ) to half of the questions
(experimental items), but not the other half (control items), and
then recall their original judgments (ROJ) to all the questions.
A HB response is characterized by the ROJ typically being
closer to the CJ for experimental than for control items (for a
review of HB measures, see Pohl, 2007). Across studies, older
adults demonstrated a greater tendency to exhibit HB as com-
pared to younger adults (Bayen et al., 2006; Bernstein et al.,
2011; Coolin et al., 2014; Groß & Bayen, in press).

One explanation for increased HB in older adults is that
declines in episodic memory and executive functioning may
influence susceptibility to outcome knowledge when making
hindsight judgments (e.g., Bayen, Pohl, Erdfelder, & Auer,
2007; Coolin et al., 2014). Indeed, we previously found that
older adults’ susceptibility to HB was partly due to age-related
declines in episodic memory and inhibition (Coolin et al., 2014).
Age-related declines in episodic memory (Hedden & Gabrieli,
2004) may result in outcome knowledge interfering with older
adults’ recollection of the OJ, creating a recollection bias: better
recollection of the OJ for control than for experimental items. If
the OJ is not recollected, then it must be reconstructed. During
this reconstruction stage, age-related declines in inhibition
(Hasher & Zacks, 1988) may result in older adults being unable
to suppress the CJ. Subsequently, this information may bias the
reconstruction of the forgotten OJ, creating a reconstruction bias:
ROJ shifts toward the CJ relative to the OJ.

Erdfelder and Buchner (1998) developed a multinomial pro-
cessing tree (MPT) model for memory judgment data to esti-
mate the relative contributions of recollection and reconstruction
biases to HB (for reviews of MPT models see Batchelder &
Riefer, 1999; Erdfelder et al., 2009). The model has 13 param-
eters and thus is referred to as theHB13 model. Each parameter
represents a different psychological process that together form
the underlying processing tree, which describes the multiple
ways in which HB arises. The biases and errors that can occur
in each judgment stage are captured by parameters rC, rE, b, and
c—the four core parameters of the HB13 model. Parameters rC
and rE represent the probabilities of recalling the OJ for control
and experimental items, respectively. Recollection bias is the
difference between the recollection probabilities (i.e., rC – rE).
Parameters b and c represent underlying processes that can
occur in the reconstruction stage. Parameter b is the probability
of reconstruction bias, represented by a shift of the ROJ toward
the CJ relative to the OJ (e.g., OJ < ROJ < CJ). Parameter c is
the probability of a verbatim CJ adoption, represented by a
complete shift of the ROJ to the CJ (e.g., OJ < ROJ = CJ).

The two prior studies that have used the HB13 model to
investigate age differences in HB have shown that older adults
tend to have an overall larger reconstruction bias and recollec-
tion bias than do younger adults (Bayen et al., 2006; Bernstein
et al., 2011). With regard to parameter c, older adults tend to
show more CJ adoptions, particularly when the CJ is accessible
during ROJ (Bayen et al., 2006).

A limitation of previous HB13model applications has been
their assumption of fixed process contributions across indi-
viduals.When data are aggregated the model provides a single
set of 13 parameters for the entire sample and thus cannot
account for individual differences. The underlying parameter
homogeneity assumption may easily be violated, especially
when modeling a cognitive phenomenon. Parameters quantify
different cognitive aspects of task performance and people
demonstrate variability in their cognitive skills, particularly
in samples with large within-group differences (e.g., for older
adults, see Smith & Batchelder, 2008). Ignoring this hetero-
geneity in analyses of aggregated data is also problematic
from a statistical point of view, as parameter heterogeneity
may distort results of parameter estimation and goodness-of-
fit tests (Batchelder & Riefer, 1999; Erdfelder et al., 2009;
Klauer, 2006, 2010; Smith & Batchelder, 2008; Stahl &
Klauer, 2007). Furthermore, models that adequately describe
the response structure at an individual level will often be
rejected at the aggregate group level because the parameters
vary across individuals (Stahl & Klauer, 2007).

In response to these issues, researchers have developed
formal approaches to incorporate individual variability into
MPT models (e.g., Klauer, 2006, 2010; Smith & Batchelder,
2010). These approaches are based on hierarchical extensions
of traditional MPT models and capture parameter
heterogeneity by specifying a distribution of the parameters
across individuals. For example, Klauer (2006) proposed a
latent-class MPT model that is based on a discrete distribution
of parameters. This approach assumes that each participant
falls into one of a fixed set ofmutually exclusive latent classes.
Although the parameter values of all individuals in a certain
latent class are assumed to be homogeneous, the model allows
for variation in parameter values between classes (Klauer,
2006). In a subsequent article, Stahl and Klauer (2007) pro-
vided a computer program (HMMTree) to implement latent-
class hierarchical MPT models.

More recently, researchers have argued that the latent-class
model’s assumption of a discrete distribution, in which partic-
ipants are sampled from several distinct but homogeneous
groups, may be inadequate in certain applications and that a
continuous distribution of parameter values across individuals
is more reasonable (Smith & Batchelder, 2010) . Therefore,
Smith and Batchelder (2010) developed a class of hierarchical
models that allows parameters to vary continuously over
individuals. The assumption is that each individual’s model
parameters are sampled independently from a multivariate
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Beta distribution. Furthermore, Klauer (2010) proposed a
latent-trait approach based on continuous latent variables with
an underlying multivariate Gaussian structure. A major ad-
vantage of this model is that it can conceivably be extended to
include covariates that explain variability in the model
parameters.

Although researchers have made considerable progress in
implementing interindividual heterogeneity into the estima-
tion of MPT models, these hierarchical models remain quite
complex and statistically intensive. Furthermore, the models
are limited by distributional assumptions for the parameters.
That is, the validity of this family of models hinges on sub-
scribing to a certain distributional assumption for the model
parameters, which may not be warranted in all situations. To
date, no one has attempted to apply any of these approaches to
the HB13 multinomial model, and thus, our understanding of
the abilities that impact the processes underlying HB remains
incomplete.

For these reasons, we present a variation of Klauer’s (2010)
latent-trait model that does not require distributional assump-
tions for the parameters. In addition, our model incorporates
individual difference data (i.e., cognitive ability scores) into the
HB13 multinomial model to explain variability in the underly-
ing processes. We were particularly interested in modeling HB
in older adults because the large variation in cognitive func-
tioning in this population permits us to examine whether indi-
vidual differences in cognitive functioning could explain het-
erogeneity in the underlying HB processes. Although there is
less variation in cognitive functioning in younger adults, we
also applied our model to a younger-adult comparison group to
examine whether the general pattern of findings observed in
older adults would also hold for this age group.

The objectives of this study were twofold: Our first aim
was to present an alternative, easily implemented approach to
incorporating heterogeneity into the estimation of MPT
models. Although we aimed to explain heterogeneity in terms
of cognitive functioning data, our model can be generalized to
include any continuous or categorical covariate (e.g., person-
ality, demographic variables, etc.), and thus will have broad
applications in the MPT and HB literatures. Our second aim
was to extend prior work in the HB literature by identifying
the cognitive traits associated with the core underlying HB
processes in older and younger adults. We will now briefly
review cognitive theories of HB, and follow this with hypoth-
eses regarding the cognitive abilities associated with the un-
derlying processes and a description of our model.

The recollection–reconstruction theory of HB

The HB13 model is based on a recollection–reconstruction
theory of hindsight judgments, similar to the two-stage mem-
ory judgment theories suggested for other paradigms (cf.

Dehn & Erdfelder, 1998; Hell et al., 1988; McCloskey &
Zaragoza, 1985; Stahlberg & Maass, 1998). The model as-
sumes that when prompted for a hindsight judgment, individ-
uals first try to recollect their own OJ. For control items, in
which outcome knowledge is absent, recollection of one’s OJ
should depend on episodic memory functioning in the first
place, such as the ability to successfully encode, consolidate,
and retrieve the OJ from long-term memory. For experimental
items, in which outcome knowledge is present, recollection of
one’s OJ may not only depend on memory functioning but
also on the ability to inhibit outcome information. If this
information is not inhibited, then it may interfere with the
memory trace of the OJ, resulting in poorer recollection of the
OJ for experimental than for control items (i.e., recollection
bias). Conditional on a failed OJ recollection, individuals then
enter a second judgment stage in which they try to reconstruct
the OJ on the basis of available context information. In this
reconstruction stage, overreliance on outcome knowledge
may result in a biased reconstruction of the OJ (i.e., recon-
struction bias).

Reconstruction theories have received more attention than
recollection theories, and researchers have developed several
models to explain the mechanisms by which reconstruction
bias can occur (see Christensen-Szalanski & Willham, 1991;
Guilbault, Bryant, Brockway, & Posavac, 2004; Hawkins &
Hastie, 1990, for reviews). Two popular reconstruction theo-
ries are the anchoring-and-adjustment theory and the
rejudgment theory. The anchoring and adjustment theory
posits that individuals reconstruct their OJ on the basis of their
updated knowledge state (i.e., after learning the CJ), and then
adjust this estimate to account for their naïve prior state (i.e.,
prior to learning the CJ). HB may result from an inadequate
adjustment process. The rejudgment theory posits that indi-
viduals attempt to repeat the judgment process that they used
to generate the OJ (Winman, Juslin, & Björkman, 1998). In
this case, HB may result if the contextual information during
the OJ stage differs from that of the ROJ stage, or if outcome
knowledge alters (i.e., updates) one’s knowledge base. Prior
work generally supports reconstruction theories of HB
(Erdfelder & Buchner, 1998; Hoffrage, Hertwig, &
Gigerenzer, 2000; Schwarz & Stahlberg, 2003).

Although reconstruction bias is a major determinant of HB,
other theorists have argued that recollection bias also plays a
role (e.g., Erdfelder, Brandt, & Bröder, 2007; Nestler, Blank,
& Egloff, 2010; Pohl, Bayen, & Martin, 2010). For example,
in a review of 11 studies across 34 conditions, Erdfelder et al.
(2007) found a small but reliable mean recollection bias
estimate of .03 (range: –.05 to .22) in within-subjects manip-
ulations of experimental and control items. This indicates that,
on average, participants successfully recalled 3% more of
their OJs when they were not shown the CJs. The recollection
bias was found to be larger in studies using randomized
between-subjects manipulations of outcome knowledge.
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These findings are consistent with other reviews (Pohl, 2004),
suggesting that recollection bias is a modest but significant
contributor to HB. Broader integrative theories of HB have
also proposed that both recollection and reconstruction biases
are implicated in HB and that outcome knowledge interferes
with the recollection and reconstruction of OJs (Blank &
Nestler, 2007; Hoffrage et al., 2000; Pohl, Eisenhauer, &
Hardt, 2003).

The role of cognitive functioning in HB

Cognitive abilities that have been implicated in age differ-
ences in HB include inhibition of irrelevant information,
episodic memory, and working memory (e.g., Bayen et al.,
2006; Bayen et al., 2007; Coolin et al., 2014; Groß & Bayen,
in press). We have previously reported that inhibition and
episodic memory partially mediated age-related increases in
HB in a sample of older and younger adults (Coolin et al.,
2014). Specifically, older age was associated with poorer
inhibitory control and episodic memory, which were associ-
ated with a tendency to exhibit HB more often. In the present
study, we applied an extended version of the HB13 multino-
mial model to assess whether these cognitive abilities influ-
enced recollection or reconstruction processes, or both.

A potentially relevant theoretical framework is provided by
the inhibitory-deficit theory (Hasher & Zacks 1988; see Lustig,
Hasher, & Zacks, 2007), which proposes three functions of
inhibition: (1) controlling access of irrelevant information from
entering working memory, (2) suppressing irrelevant informa-
tion that has gained access to working memory, and (3)
restraining strong but inappropriate responses. Each inhibitory
function is less efficient in older than in younger adults, and
poorer inhibitory functioning is associated with difficulty in
other areas of cognitive functioning (e.g., episodic memory,
processing speed, attention; Lustig et al., 2007). Researchers
have suggested that several inhibitory functions may be in-
volved in the memory judgment HB task (see Bayen et al.,
2006; Bayen et al., 2007). For example, access inhibition may
be required to control access of irrelevant CJ information from
entering working memory and interfering with recall of task-
relevant OJ information. Given a failure in access control, the
suppression function may be needed to suppress CJ informa-
tion that has already gained access to working memory. Finally,
restraint inhibition may be required to avoid responding using
the highly accessible CJ information. Thus, poorer inhibitory
functioningmay result in the CJ interferingwith recall of the OJ
(i.e., recollection bias), and/or biasing the reconstruction of a
forgotten OJ (i.e., reconstruction bias).

Erdfelder and colleagues (2007) found support for the role
of inhibition in recollection bias in a sample of younger adults.
The authors separated inhibition into two types of interference
effects referred to as specific and generalized response

competition (see Newton & Wickens, 1956). They defined
specific response competition as new knowledge impairing
memory for prior knowledge for a specific item (e.g., learning
the length of the Nile River interferes with memory for one’s
OJ to this item), and generalized response competition as new
knowledge interfering with memory for a set of items (i.e.,
learning the length of the Nile River interferes with the recall
of the OJs to several other items—for example, “How long is
the Rhine River?”). Erdfelder and colleagues demonstrated
that both interference effects contribute to recollection bias
and can be selectively manipulated. Whereas generalized
recollection bias increased with the number (i.e., set size)
and similarity (i.e., related knowledge domains) of items,
specific recollection bias decreased when the encoding and
retrieval contexts of experimental items were similar (i.e.,
enhanced ROJ).

Researchers have also hypothesized that episodic memory
plays a role in the recollection stage (Erdfelder & Buchner,
1998; Hell et al., 1988). For example, according to the mem-
ory trace strength hypothesis, individuals with poorer episodic
memory may have weaker memory representations of their
OJs, and thus may be more susceptible to outcome knowledge
interfering with retrieval of the OJ (Hell et al., 1988).
Furthermore, if the OJ cannot be retrieved, individuals may
overrely on the CJ during the reconstruction process (Hell
et al., 1988; Pohl et al., 2003). Thus, poorer recall ability could
be associated with an increased probability of recollection or
reconstruction bias.

Finally, researchers have shown that the accessibility of
outcome knowledge in working memory affects HB (Bayen
et al., 2006; Groß & Bayen, in press; but see also Nestler,
Blank, & von Collani, 2008). Bayen and colleagues (2006)
found that when the CJs appeared immediately prior to recall
with an instruction for participants to memorize them for a
later test (Exp. 2), older and younger adults showed greater
overall HB than when the CJs appeared minutes prior to recall
with no encoding instructions (Exp. 3). MPT analyses re-
vealed that both age groups demonstrated a significant recon-
struction bias across experiments. In contrast, whereas youn-
ger adults did not show a recollection bias in either experi-
ment, older adults demonstrated a significant recollection bias
(but only in Exp. 2). One explanation may be that when
outcome knowledge is available in working memory during
recall, it decreases the ability to retrieve the OJ, possibly by
creating interference between the OJ and CJ, resulting in a
recollection bias.

The present study

We propose a variation of Klauer’s (2010) latent-trait model
that incorporates cognitive covariates into the core parameter
estimation process using a logistic link function. Using the
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proposed model (referred to as the logistic HB13 model), we
examined whether heterogeneity in recollection ability and
reconstruction bias in older and younger adults can be
accounted for by various cognitive abilities previously impli-
cated in HB (e.g., Bayen et al., 2006; Bayen et al., 2007;
Coolin et al., 2014; Erdfelder et al., 2007). By observing
individual bias parameters, we examined the relationship be-
tween the parameters and cognitive abilities using appropriate
regression models. For example, if one modeled the person-
specific parameter for reconstruction bias, denoted as bk, as a
logistic function of inhibition, the function would be

bk ¼ exp αþ β⋅Inhibitionkð Þ
1þ exp αþ β⋅Inhibitionkð Þ ð1Þ

where α and β are real-valued constants to be estimated and k
represents an individual, k = 1, . . . , n. The rationale for this
equation is that individuals with better inhibitory control should
have a lower probability of reconstruction bias than would
individuals with poorer inhibitory control. As we will describe
later, higher scores on our inhibition measure reflect poorer
performance. Thus, we would expect β to be positive in this
equation. If the β coefficient for the inhibition term were signif-
icant, one would reject the null hypothesis that bk does not vary
as a function of inhibition. The logistic HB13 model presented
here allows us to estimate α and β in the above regression
equation and to test hypotheses about these parameters.

On the basis of prior work (Bayen et al., 2006; Bayen et al.,
2007; Coolin et al., 2014; Erdfelder et al., 2007), we investigated
whether recollection ability and reconstruction bias vary as func-
tions of individual differences in (1) inhibition, (2) episodic
memory, and (3) working memory capacity. These particular
cognitive abilities often show age-related declines in older-adult
samples, and larger interindividual variability is apparent within
older than within younger samples (e.g., Christensen et al., 1994;
Raz, Ghisletta, Rodrigue, Kennedy, & Lindenberger, 2010;
Zelazo, Craik, & Booth, 2004). Such variability in cognition
may contribute to differences in the underlying HB processes.
We predicted that similar cognitive abilities would contribute to
these processes across age groups; however, given the larger
variability in cognitive functioning in older adults, we expected
the effects to be larger in older than in younger adults.

Our working hypotheses were that rC would depend on
memory functioning, such that better memory would be associ-
ated with a higher recollection rate for control items, and rE
would depend on both memory and inhibitory functioning, such
that better memory and inhibitory control would be associated
with a higher recollection rate for experimental items. Our work-
ing hypothesis for reconstruction bias (b) was that each of the
three cognitive abilities examined would affect reconstruction
bias. First, we expected individualswith poorer inhibitory control
to have more difficulty suppressing outcome knowledge. This

information might then bias the reconstruction process. Second,
we expected individuals with poorer episodic memory to have
weaker memory traces of their OJs, and thus to overrely on the
CJ to reconstruct forgotten OJs. Third, we expected individuals
with lower working memory capacity to have more difficulty
separating the multiple pieces of information that were in work-
ing memory during recall (e.g., OJ and CJ), and thus to be more
likely to exhibit interference between the OJ and CJ.

Method

HB13 model (Erdfelder & Buchner, 1998)

Prior to detailing our proposed extension to the HB13model, we
will first review some of the basic considerations of Erdfelder
and Buchner’s (1998) HB13model. The model requires discrete
data. Thus, participants’ continuous HB judgments on each item
are assigned to one of ten possible categories. The categories are
a set of all possible rank orders of the OJ–CJ–ROJ, allowing for
ties between the OJ and ROJ but excluding ties between the OJ
and CJ, because HB cannot be investigated when the OJ and CJ
are identical (Erdfelder & Buchner, 1998). Five categories are
created to encompass instances when the OJ underestimates the
CJ– (1) ROJ < OJ < CJ, (2) ROJ = OJ < CJ, (3) OJ < ROJ < CJ,
(4) OJ < ROJ = CJ, and (5) OJ < CJ < ROJ– and another five for
instances when the OJ overestimates the CJ– (6) CJ <OJ < ROJ,
(7) CJ < ROJ = OJ, (8) CJ < ROJ < OJ, (9) ROJ = CJ < OJ, and
(10) ROJ < CJ < OJ. The categories capture whether the ROJ
deviates in the direction of the CJ (Rank Orders 3, 4, 5, 8, 9, and
10), deviates in the opposite direction (Rank Orders 1 and 6), or
is equal to the OJ (Rank Orders 2 and 7). On the basis of the
frequency of responses that fit into each category, the probabil-
ities of the sequence of processes that lead to certain OJ–CJ–ROJ
rank orders can be calculated to decompose the HB observed in
memory judgment experiments.

Illustration of the HB13 model

Erdfelder and Buchner’s (1998) HB13 model contains 13
parameters, each reflecting a different psychological process
(see Table 1), that together form the underlying processing
trees. The HB13 model is illustrated in Fig. 1. The processing
tree in Fig. 1A depicts the model for control items (C), in
which the CJ is absent. The first branch identifies whether the
OJ underestimates (lC) or overestimates (1 – lC) the CJ.

1 The

1 Erdfelder and Buchner (1998) suggested that the size of the HB effect
may differ depending on whether an individual’s OJ underestimates or
overestimates the CJ during the encoding stage. Although the values of
the model’s parameters (particularly the unbiased reconstruction param-
eters) may depend on whether the OJ underestimates or overestimates the
CJ, the sequence of cognitive processes that occur during the retrieval
stage is assumed to be independent of events duringencoding.
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upper tree represents processes that occur when the OJ initial-
ly underestimates the CJ. If the OJ is successfully recalled,
with probability rC, then the ROJ = OJ. However, if the OJ is
not recalled, with probability (1 – rC), then a reconstruction is
required. Because the CJ is absent for control items, the
reconstruction process is unbiased, but could hit the OJ or
CJ by chance, with probability 2h. In the case of an unbiased
reconstruction without a chance hit, with probability (1 – 2h),
parameters g11 and g12 denote the probabilities of the OJ
underestimating the CJ (OJ < CJ). Specifically, if the recon-
struction results in an ROJ that is smaller than the CJ (ROJ <
CJ), with probability g11, then the ROJ will be smaller or
larger than the OJ, with probabilities g12 and (1 – g12), respec-
tively. In contrast, if the reconstruction results in an ROJ that is
larger than the CJ (ROJ > CJ), with probability (1 – g11), then
the ROJ will be larger than the OJ with probability 1. The
lower tree (cases in which OJ > CJ) corresponds to the upper
tree described here.

The processing tree in Fig. 1B depicts the model for exper-
imental items (E), in which the CJ is present. This model
follows the same basic structure as the control model, with
several notable differences. First, the probability of recalling
the OJ for experimental items (rE) may differ from that for the
control items, indicating a recollection bias (rC – rE). If no
recollection bias is present, then recollection of the OJ would
be equal across item conditions (i.e., rC = rE); however, if
outcome knowledge interferes with recollection ability during
recall, then recollection of the OJ may be better for control
than for experimental items (rC > rE). The second difference to

note in the experimental model is that given a failure to recall
the OJ, the reconstruction process can be biased by outcome
knowledge, with probability b. One way in which a biased
reconstruction can result is from a verbatim CJ adoption (c). If
there is no CJ adoption, with probability (1 – c), a biased
reconstruction can also occur if the ROJ falls between the OJ
and CJ (OJ < ROJ < CJ or CJ < ROJ < OJ), with a probability
of g13 or gg3, or if the ROJ is larger or smaller than the CJ and
OJ (OJ < CJ < ROJ or ROJ < CJ < OJ), with probability (1 –
g13) or (1 – gg3).

Model equations are derived by summing all of the corre-
sponding branch probabilities that lead to a particular rank-
order event, with the probability of a branch being a product of
all parameters belonging to that branch. For example, in the
control model, the probability of perfectly recalling an OJ
when it is an underestimate of the CJ (i.e., ROJ = OJ < CJ)
is derived from the product of the corresponding parameters
(i.e., lC · rC). If more than one branch leads to the same rank-
order event, then the branch probabilities are summed. The
remaining model equations can be found in Table 3 of
Erdfelder and Buchner (1998, p. 396). On the basis of these
20 model equations (ten for control, ten for experimental), the
parameters are estimated by maximizing the model’s likeli-
hood function, and the likelihood ratio G2 is typically used to
test whether the model adequately fits the data (Hu &
Batchelder, 1994).

The logistic HB13 model: Model derivation

For ease of comparison, we adapt the notation used in
Erdfelder and Buchner’s (1998) HB13 model. Let i denote
the experimental or control item condition (i = 1, 2), j denote
the rank order (j = 1, . . . , 10), and k denote the participant (k =
1, . . . , n). Let Yi,j,k represent the number of observations in
condition i and rank order j for participant k, and pi,j,k the
corresponding probability for the same event category. The
model parameters for individual k are summarized in a param-
eter vector θk, and the vector of individual characteristics
(e.g., cognitive ability test scores) for participant k is denoted
by Xk. In addition to the observed individual characteristics,
the total number of HB rank-order observations for condition i
and participant k is Ni,k=∑ j=1

10 Yi,j,k. We adapt Erdfelder and
Buchner’s expression for the probability of observing a vector
of sample frequencies to an individual level. For participant k
in condition i, this probability follows a multinomial distribu-
tion, as follows:

Pr Y i;1;k ;…; Y i;10;k ;Xk

� �
¼ Ni;k!∏

j¼1

10 pi; j;k θk ;Xkð ÞY i; j;k

Y i; j;k!
: ð2Þ

Apart from introducing separate multinomial distributions
for each individual k, the main innovation in Eq. 2, as com-
pared to Erdfelder and Buchner’s (1998, p. 390) Eq. 1, is that

Table 1 HB13 model parameters and their psychological interpretations

Parameter Interpretation

rCk Probability of an individual recalling the OJ for a control
item.

rEk Probability of an individual recalling the OJ for an
experimental item.

bk Probability of an individual making a biased reconstruction
given a failure to recall their OJ.

c Probability of a CJ adoption in the case of biased
reconstructions.

h Probability of a chance hit of the OJ or CJ in the case of
unbiased reconstructions.

g11, gg1 Parameters characterizing the ROJ distribution in the case of
unbiased reconstructions without chance hits (for OJ < CJ
and OJ > CJ, respectively).

g12, gg2 Parameters characterizing the ROJ distribution in the case of
unbiased reconstructions without chance hits (for OJ < CJ
and OJ > CJ, respectively).

g13, gg3 Parameters characterizing the ROJ distribution in the case of
biased reconstructions without a CJ adoption (for OJ < CJ
and OJ > CJ, respectively).

lC, lE Probability of OJ < CJ for control and experimental items,
respectively.
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Fig. 1 Erdfelder and Buchner’s (1998) multinomial processing tree
model for hindsight bias. (A) Processing tree for control items. (B)
Processing tree for experimental items. OJ = original judgment, ROJ =
recall of the original judgment, CJ = correct judgment. From
“Decomposing the Hindsight Bias: A Multinomial Processing Tree

Model for Separating Recollection and Reconstruction in Hindsight,”
by E. Erdfelder and A. Buchner, 1998, Journal of Experimental Psychol-
ogy: Learning, Memory, and Cognition, 24, pp. 392–393. Copyright
1998 by the American Psychological Association
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pi,j,k is now not only a function of the parameter vector θk, but
also of the individual characteristics Xk. Note that individual
variability in Xk makes the category probabilities pi,j,k vary
between participants, even if the parameter vector θk happens
to be constant across individuals. Because of this model
property, we can allow heterogeneity into the model with only
a small increase in the number of to-be-estimated parameters.
For notational ease, we gather the individual sample frequen-
cies for condition i into a vector Yi = (Yi,1,1, . . . , Yi,10,1, . . . ,
Yi,1,n, . . . ,Yi,10,n), where n represents the number of partici-
pants. Similarly, we gather the individual characteristics into a
sample vector denoted as X = (X1, . . . , Xn). By experimental
design, there is independence across the participants’ data;
thus, the joint probability of observing all participants’ data in
a given condition is

Pr Yi;Xð Þ ¼ ∏
k¼1

n
Pr Y i;1;k ; Y i;2;k ;…; Y i;10;k ;Xk

� �
: ð3Þ

Like Erdfelder and Buchner, we assume independence
between the experimental and control observations. Thus,
the probability of observing the entire sample is

Pr Y;Xð Þ ¼ ∏
i¼1

2
Pr Yi;Xð Þ;where Y ¼ Y1;Y2ð Þ: ð4Þ

Mapping individual characteristics to HB parameters

In accordance with the HB13 model, we model the category
probabilities as being the product of an underlying multino-
mial processing tree. However, to incorporate the cognitive
data, we conceive the process parameters as being derived
from underlying latent variables that may vary between indi-
viduals. For example, we model reconstruction bias as occur-
ring on itemm for participant k if a latent variable bkm

* exceeds
a threshold. More precisely,

reconstruction bias ¼ 1 if b�km > 0
0 if b�km ≤ 0

�
: ð5Þ

By implication, the probability of reconstruction bias for
participant k is bk=p(bkm

* >0). We then need to model the
relationship between the observed individual characteristics
and the latent variables. To incorporate cognitive data, we
follow Klauer (2010) and Ansari, Vanhuele, and Zemborain
(2008, as cited in Klauer, 2010) by modeling the latent vari-
able bkm

* as a function of the cognitive data and a random error
component:

b�km ¼ αb þ βb1X1k þ βb2X2k þ…þ βbCXCk þ εkm; ð6Þ

where αb and βbc, c = 1, . . . , C, are parameters to be
estimated; Xck, c = 1, . . . , C, denotes the value of variable

Xc for participant k; and εkm is the random error of participant
k on item m. Whereas Klauer (2010) modeled εkm as being
normally distributed, Ansari et al. (2008, as cited in Klauer,
2010) modeled εkm as being logistically distributed. We adopt
the logistic distribution for its simplicity, since it allows for an
analytical solution for the data likelihood.2 However, we
conducted additional analyses using a normally distributed
error term. As we will show in Appendix 1, the results for
the normal error model proved to be very similar, providing
converging evidence for the logistic error model.

A bias will occur whenever εkm>−α−βb1X1k−βb2X2k−…
−βbCXCk. Thus, the probability of reconstruction bias for
participant k, bk, is the probability that this event occurs.
Because εkm is logistically distributed with expectation zero,
this probability is

bk ¼ exp αb þ βb1X1k þ βb2X2k þ…þ βbCXCkð Þ
1þ exp αb þ βb1X1k þ βb2X2k þ…þ βbCXCkð Þ: ð7Þ

For parameters that are not modeled as functions of cogni-
tive data, the logistic function simplifies to a constant, as in the
aggregated HB13 model. Another possibility is to allow the
probabilities to vary freely across individuals. In this case, the
latent variable would be modeled as bkm

* =αbk+εkm , and the

probability of bias would be bk ¼ exp αbkð Þ
1þexp αbkð Þ .

Given that (a) a larger bk indicates a larger probability of
reconstruction bias and (b) higher episodic memory and work-
ing memory scores indicate better performance, we would
expect the coefficients for episodic memory and working
memory to be negative. Conversely, because higher scores
on the inhibition measure indicate poorer performance (i.e.,
increased latencies), we would expect the coefficient for inhi-
bition in the function for bk to be positive. This would indicate
that better episodic memory, higher working memory capac-
ity, and better inhibitory control are associated with a lower
probability of reconstruction bias. Analogously, we would
expect the coefficient for episodic memory in the correspond-
ing logistic functions for rCk and rEk to be positive, and the
effect of inhibition on rEk to be negative. This would indicate
that better episodic memory and better inhibitory control,
respectively, are associated with a higher probability of
recalling one’s OJ.

Model-based data analysis

The logistic model outlined in the previous section can only be
used to test our primary hypotheses when it provides a good

2 Note that another major difference from Klauer’s (2010) latent-trait
approach is that we make a distributional assumption about the latent
error term only, whereas he makes an additional assumption about the
joint distribution of the latent model parameters (i.e., the assumption of a
multivariate normal distribution).
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account of the empirical data. To check the empirical adequacy
of this model, we compared it to a series of alternative models
incorporating individual variability. More precisely, we intro-
duce four candidate models: (1) the general multinomial model,
(2) the unconstrained HB13 model, (3) the simplified HB13
model, and (4) the logistic HB13 model. Table 2 presents a
summary of each of these models. In addition, to facilitate
comparisons with previous research on age differences in HB,
we also provide analyses based on the original HB13 model
when it is applied to data aggregated across individuals (see
Appendix 2). To anticipate, we observed age differences in the
core HB parameters that are quite similar to those obtained in
prior work (Bayen et al., 2006; Bernstein et al., 2011).

The general multinomial model was our reference model
and represents the 2 · 10 probabilities of the experimental and
control HB data, respectively, for each of the n individuals
within an age group without any restriction. In contrast, the
unconstrained HB13 model assumes that the HB13 model
holds for each individual and allows for unconstrained indi-
vidual variability in each of its 13 parameters. We first
assessed the fit of the unconstrained HB13 model to the
probabilities of the observed HB data (i.e., the general multi-
nomial model) for the n individuals in the respective age
groups. Then we introduced the simplified HB13 model,
which is a more parsimonious version of the unconstrained
HB13 model with fewer parameters. More precisely, we con-
ducted heterogeneity tests on each of the 13 parameters to
determine whether any of the unconstrained parameters could
be simplified to a constant. On the basis of the results of these
heterogeneity tests, in the simplified HB13 model, homoge-
neous parameters were modeled as constants and heteroge-
neous parameters were allowed to vary between individuals.
Finally, we introduced the logistic HB13 model, which re-
places the unconstrained core parameters (bk, rCk, and rEk) of
the simplified HB13 model with logistic functions of the
cognitive covariates, allowing us to test the role of the cogni-
tive covariates in these parameters. We first applied the above

series of model steps to our older-adult data set and then
applied the same model steps to our younger-adult compari-
son group.

Prior to presenting tests of our substantive hypotheses, we
present a model selection analysis to determine which of our
four candidate models best approximated the “true” model
underlying the data. One possibility was to examine which
model provided the closest fit to the data, but this criterion
did not take into account model complexity. Although complex
models with many free parameters tend to be more flexible in
fitting different sets of data, it is more desirable to select a
model that balances model accuracy (i.e., adequately accounts
for the data) and parsimony (i.e., using few parameters;Myung,
2000; Myung & Pitt, 1997; Wagenmakers & Farrell, 2004).
The main reason for this is that the flexibility of complex
models leads to a disadvantage in predicting future data, due
to the increased probability of sampling error influencing the
parameter estimates (e.g., Klauer, Stahl, & Erdfelder, 2007). To
overcome this problem, we chose the Akaike information
criterion (AIC; Akaike, 1974) for model selection, because this
criterion (1) penalizes nonparsimonious models, and thus bal-
ances descriptive accuracy and parsimony, (2) assesses the
goodness-of-fit of the model for predicting future data from
themodel as fitted from the observed data, and (3) is commonly
used for choosing between stochastic models of cognition (e.g.,
Ashby, Prinzmetal, Ivry, & Maddox, 1996; Burnham &
Anderson, 2002; Klauer et al., 2007; Myung, 2000).

For each of the candidate models q, q = 1, 2, . . . , Q, the
AIC is defined as follows:

AICq ¼ −2⋅ln Lq
� �þ 2Pq; ð8Þ

where Lq is the maximized likelihood for candidate model q,
and Pq is the number of parameters in candidate model q. As
can be seen in Eq. 8, AIC penalizes for lack of simplicity of
the model, such that AIC values increase with the number of

Table 2 Summary of the various multinomial processing tree models

Model Interpretation Number of Free
Parameters

General multinomial Raw category frequencies (pi,j,k) 2 · 9 · n

HB13 HB13 model with aggregated data (Erdfelder & Buchner, 1998) 13

Unconstrained HB13 HB13 model applied to n individual data sets. Parameters are
rCk, rEk, bk, . . . , k = 1, . . . , n

13 · n

Simplified HB13 HB13 model with core parameters bk, rCk, and rEk and ancillary
parameters gl1k and gg1k unconstrained, and c and the remaining
ancillary parameters constant

5 · n + 8

Logistic HB13 HB13 model with bk, rCk, and rEk constrained as (four-parametric)
logistic functions of the three individual-difference variables, gl1k
and gg1k unconstrained, and c and the remaining ancillary param-
eters constant

4 + 4 + 4 + 2 · n + 8
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model parameters. The AIC-best model is the candidate model
that provides the best balance between goodness-of-fit and
parsimony, and is identified by the lowest AIC value. Notably,
it can be shown that choosing the model with the lowest AIC
value is asymptotically equivalent to choosing the model with
the smallest expected information loss (minimizing the
Kullback–Leibler discrepancy) when approximating a true
model (Wagenmakers & Farrell, 2004). This is a highly de-
sirable property of our model selection criterion. However, it
does not provide a simple interpretation of raw AIC scores.

Given the difficulty in interpreting the statistical impor-
tance of raw AIC differences among candidate models,
Wagenmakers and Farrell (2004) developed a method to eas-
ily transform raw AIC values into Akaike weights (Akaike,
1978; Burnham & Anderson, 2002), which represent the
relative likelihood of each model and can be interpreted in
terms of conditional probabilities. To obtain the Akaike
weights for our four candidate models, we first calculated
their ΔAIC scores, where

Δq AICð Þ ¼ AICq− minAIC; ð9Þ

with minAIC being the smallest AIC value and, by implication,
the best model having aΔAIC score of 0. Next, we calculated
the relative likelihood of each candidate model, that is

expf�0:5Δq AICð Þg: ð10Þ

Finally, we calculated the Akaike weights wq(AIC) by
normalizing the relative model likelihoods, where

wq AICð Þ ¼ expf−0:5Δq AICð Þg
∑Q

q¼1expf−0:5Δq AICð Þg; ð11Þ

such that∑wq(AIC) = 1.Weightwq(AIC) can be interpreted as
a probability estimate that Mq is the best model in terms of
minimizing information loss, given the data and the set of
candidate models (Wagenmakers & Farrell, 2004). Thus, we
identified the AIC-best model for older adults and the AIC-
best model for younger adults on the basis of the candidate
model with the smallest AIC score and the highest Akaike
weight in each respective age group.

Statistical analyses

We programmed the likelihood functions for all candidate
models in MATLAB and estimated different versions of the
HB13 model using MATLAB’s optimization toolbox. The
p values and 95% confidence intervals reported for the model
fit tests and for the logistic HB13 hypothesis tests were based
on 500 bootstrapped samples. Given the length of time re-
quired to complete the heterogeneity tests on each parameter,

these analyses were based on 100 bootstrapped samples. We
used the parametric bootstrap exclusively to determine p-
values, because p values based on the asymptotic chi-square
distribution of G2 under H0 can be severely misleading when
the data include many zero cells, which was the case for our
data. Thus, we dispensed with asymptotic p values and re-
placed them with estimates based on the exact distribution of
G2 under H0 using the parametric bootstrap (Efron &
Tibshirani, 1993). For clarity, we denote all p-value estimates
based on the parametric bootstrap method by pb. In accor-
dance with prior work (e.g., Bayen et al., 2006), we set an
alpha level of .01 for model fit tests because we did not want
to reject a model that only slightly differed from the compar-
ison model. Importantly, even at this alpha level we had
sufficient power to detect moderate (i.e., w = .3; Cohen,
1988) but not small (i.e., w = .1) deviations from the compar-
ison model.3 Thus, setting alpha to .01 provided a balance
between rejecting small deviations from the comparison mod-
el and detecting moderate model misfit issues. We provide
more detailed power information in the Results section. We
used the standard .05 alpha level for all other analyses. We
chose this conventional alpha level for heterogeneity tests
because we were less concerned with Type I errors, since this
would simply result in a homogeneous parameter being
modeled freely.

Participants

We present a reanalysis of data from a previously conducted
study examining HB differences between older and younger
adults (Coolin et al., 2014). We recruited 60 healthy
community-dwelling older adults and 64 college-aged youn-
ger adults. Community-dwelling adults over the age of 65
were recruited through newspaper advertisements in the
Metro Vancouver area, the university staff union e-mail list,
and academic aging seminars conducted by the corresponding
author. The younger adults were introductory psychology
students who received course credit for participating.

Within each age group, we examined the distributions of
observed values from the general multinomial model and pre-
dicted values from the logistic HB13 model in order to identify
individuals who had predicted values that were substantially
different from their observed values. We used the following
criterion to identify extreme values: An individual was an outlier
if the residual yi−byi was larger than three times the standard
deviation of the n – 1 remaining residuals within that age group.
Our outlier analyses revealed no outliers in our older-adult
group, but two outliers in our younger-adult group. Thus, after
excluding these two outliers, the younger-adult sample
consisted of 62 individuals (Mage= 20.10 years, range = 18 to

3 Power analyses were computed with the G*Power 3 program (Faul,
Erdfelder, Lang, & Buchner, 2007).
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25; 45 female, 17 male), and the older-adult sample remained at
60 (Mage = 72.50 years, range = 65 to 87; 35 female, 25 male).

Participants met the following inclusion criteria: (a) English
fluency; (b) aminimum of grade 7 education (i.e., completion of
primary school; older,M = 14.28 years of education, SD = 2.96;
younger, M = 13.39 years, SD = 1.94); (c) no major visual
(corrected vision ≤ 20/50) or hearing impairments; (d) absence
of self-reported diagnosis of major psychotic illness by a phy-
sician, concurrent acute illness that might affect testing, neuro-
logical disorder, major organ failure, severe traumatic head
injury, history of a stroke that affected daily living activities,
and history of dementia; and (e) alcohol consumption of less
than 3 ounces/day. All older-adult participants received a score
greater than 24 on theMini Mental State Examination (Folstein,
Folstein, & McHugh, 1975). We included performance on a
receptive vocabulary test (the Peabody PictureVocabulary Test–
3; Dunn & Dunn, 1997; scores: older, M = 188.33, SD = 9.42;
younger,M = 180.39, SD = 7.65) to index general knowledge of
word meanings. Please refer to Coolin et al. (2014) for descrip-
tive statistics regarding the traditional HB indices (e.g., Hell’s
et al., 1988) and correlations between these indices and the
cognitive ability data (see Table 4 below).

Measures

We assessed HB using a memory judgment design, which
consisted of an Original Judgment (OJ) questionnaire and a
Recall of the Original Judgment (ROJ) questionnaire. The OJ
questionnaire included 54 almanac questions (see Appendix 3)
adopted from Bayen et al. (2006) and Hardt and Pohl (2003).
One question, “When was Socrates born?” was excluded from
the analyses because some participants responded in BC and
others in AD, which prohibited the aggregation of responses
across participants. We provided participants with the metric-
system unit with which they had to respond. We randomized the
order of the questions, and then presented questions in a fixed
order to all participants. The ROJ questionnaire required partic-
ipants to recall their OJs to the 54 almanac questions. Participants
were told that they would learn the CJs to half of the questions
(experimental items), but not the other half (control items), and
that their task was to recall their OJs to all of the questions. To
control for the content of specific questions, we counterbalanced
the control and experimental items by randomly assigning par-
ticipants to one of two versions. In Version 1, the first 27 items
were experimental and the last 27 were control, and vice versa in
Version 2.

We measured inhibition using the Color-Word Inteference
test, or “Stroop test,” from the Delis–Kaplan Executive
Function System (D-KEFS; Delis, Kaplan, & Kramer,
2001). This test involves inhibiting a dominant verbal re-
sponse (word reading) in favor of a less dominant response
(color naming). Because performance is measured by time to
completion, we used the recommended procedure for

minimizing the effect of processing speed by subtracting the
baseline (color naming condition) from the inhibition condi-
tion (Delis et al., 2001). Although this “Stroop” test is typi-
cally labeled as a prepotent response inhibition task, like many
tests of inhibition, it is not a process-pure measure, and likely
involves several inhibitory processes (see Lustig et al., 2007).
For example, the access function of inhibition may be in-
volved in preventing task-irrelevant word information from
entering working memory. Given a failure in access control,
suppression and restraint functions may be involved in
avoiding a dominant reading response. Each of these inhibi-
tory processes may be relevant to the demands of the memory
judgment task.

We measured episodic memory using the long-delay free
recall trial (number of words recalled) of the California Verbal
Learning Test–2 (CVLT-II; Delis, Kramer, Kaplan, & Ober,
2000), which assesses the ability to recall a list of 16 words
after a 20-min delay. Finally, we measured working memory
capacity using raw scores obtained on the Letter–Number
Sequencing and Backward Digit Span tests of the Wechsler
Adult Intelligence Scale–III (WAIS-III; Wechsler, 1997). In
the former task, the examiner reads different combinations of
numbers and letters and the participant must recall the num-
ber(s) in ascending order, followed by the letter(s) in alpha-
betical order. In the latter task, the examiner reads a string of
digits and the participant reproduces the digits in the reverse
order. Given the strong correlations between these two mea-
sures in our sample (older, r = .64, p < .001; younger, r = .47,
p < .001), we created a working memory composite by
converting the data on both variables to z scores and then
summing them (Edgington, 1995, p. 183).

Procedures

Trained research assistants tested participants individually in a
single 2-h session at the Simon Fraser University Cognitive
Aging Laboratory. The session began with the OJ question-
naire of the memory judgment HB task. Following the OJ
questionnaire, participants completed the battery of cognitive
tests, which lasted approximately 90-min. Immediately fol-
lowing this retention period, participants completed the ROJ
questionnaire. Completion of both the OJ and ROJ question-
naires was self-paced; participants took 10–20 min to com-
plete each questionnaire.

Results

Older-adult model tests

Goodness-of-fit of the unconstrained HB13 model with re-
spect to the general multinomial model Our first statistical
test concerned the fit of the unconstrained HB13 model to the
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probabilities of the observed HB data for each of the n indi-
viduals in the older-adult group. We compared the uncon-
strained HB13 model against the general multinomial model
for 2 · 10 data categories and n individuals using parametric
bootstrapping. Each model contains S · n parameters, where S
denotes the number of unconstrained parameters in the re-
spective HBmodel. For n = 60 participants, the unconstrained
HB13 model has 13 · 60 = 780 parameters, and the general
multinomial model has 18 · 60 = 1,080 parameters. With an
alpha level of .01, N = 3,135 (60 participants · 53 items – 45
missing responses), and df = 300, we had adequate power
(>.99) to detect moderate deviations (w = .3) from the general
multinomial model, but insufficient power (.15) to detect
small deviations (w = .1). On the basis of 500 bootstrapped
samples, we initially failed to find an acceptable model fit,
ΔG2(300) = 337.95, pb < .001. Following the procedures of
Bayen et al. (2006), we identified two items that had a dispro-
portionately high number of observations in the ROJ = OJ <
CJ category relative to the ROJ = OJ > CJ category, and one
item that had a disproportionately high number of observa-
tions in the CJ < ROJ < OJ relative to the OJ < ROJ < CJ
category. Thus, these three items violated the symmetry as-
sumption of the model. After excluding these problematic
items, the remaining data set consisted of 50 items and had
an acceptable model fit, ΔG2(300) = 309.18, pb= .01.

Simplification of the unconstrained HB13 model To deter-
mine the model specification of the simplified HB13 model,
we tested for heterogeneity in each of the 13 model parame-
ters. This involved testing the unconstrained HB13 model
against a null model in which the parameter of interest was a
constant and the remaining 12 parameters were unconstrained.
If we rejected the null that the parameter was equal across
individuals, then in the simplified HB13 model the corre-
sponding parameter would be left unconstrained. Each null
model had 12 · 60 + 1 = 721 parameters.With an alpha level of
.05, N = 2,955, and df = 59, we had adequate power (>.99) to
detect moderate deviations (w = .3) of the unconstrained
HB13 model from each of the null models, but low power
(.75) to detect small deviations (w = .1).

Table 3 depicts the results of the heterogeneity tests, as well
as summary statistics on these parameters. On the basis of 100
bootstrapped samples, we rejected the null model that the
ancillary parameter was a constant for two of the nine ancillary
parameters—namely, gl1k and gg1k. These parameters affect
the distribution of unbiased OJ reconstructions (i.e., recon-
structions given no perfect OJ recollection) and represent
probabilities of reconstructing ROJs that deviate from the CJ
in the direction of the OJ. With regard to the core parameters,
we rejected the null models that the core parameters bk, rCk,
and rEk were equal across individuals. As expected, partici-
pants differed in how often they shifted their ROJ toward the
CJ relative to the OJ (i.e., reconstruction bias), as well as in

their ability to recollect their OJs perfectly, in both the pres-
ence (rEk) and the absence (rCk) of outcome knowledge.
Conversely, we accepted the null model that parameter ck
was equal across individuals.

On the basis of the results of these heterogeneity tests, we
defined the simplified HB13 model as follows: The ancillary
parameters gl1k and gg1k and the core parameters bk, rCk, rEk
were unconstrained across individuals, and parameter c and
the remaining seven ancillary parameters were constrained to
be equal across individuals. The simplified model has S · n + z
parameters, where S denotes the number of unconstrained
parameters and z denotes the number of parameters that were
simplified to constants. Thus, the simplified HB13 model had
5 · 60 + 8 = 308 parameters. With an alpha level of .01, N =
2,955, and df = 472, we had adequate power (>.99) to detect
moderate deviations (w = .3) from the unconstrained HB13
model, but insufficient power (.09) to detect small deviations
(w = .1). As expected, on the basis of 500 bootstrapped
samples, the simplified HB13 model had an acceptable model
fit, ΔG2(472) = 425.76, pb = .19.

Logistic HB13 model We then introduced the logistic HB13
model by replacing the unconstrained core parameters bk, rCk,
and rEk in the simplified HB13 model with logistic functions

Table 3 Heterogeneity tests of the HB13 parameters based on the older-
adult data set (n = 60)

Parameter Unconstrained Coefficient

Mean SD ΔG2 pb

Ancillary Parameters

gl1k .81 .15 87.04 .03

gg1k .86 .11 88.53 .046

gl2k .48 .20 69.87 .46

gg2k .49 .17 69.38 .41

gl3k .67 .29 60.34 .89

gg3k .65 .32 55.16 .62

lEk .44 .11 73.75 .15

lCk .45 .09 50.89 .76

hk .01 .02 22.15 >.99

Core Parameters

bk .46 .26 81.95 <.001

rCk .23 .10 108.35 <.001

rEk .20 .13 153.12 <.001

ck .03 .10 22.65 >.99

The means and standard deviations are based on the older-adult uncon-
strained HB13 model. The ΔG2 statistics represent the model tests
comparing the unconstrained HB13 model to a null model in which the
parameter of interest was a constant and the remaining 12 parameters
were unconstrained. The p value (denoted as pb) for ΔG2 is based on 100
bootstrapped samples. A significant ΔG2 indicates heterogeneity in the
parameter, whereas a nonsignificant ΔG2 indicates homogeneity
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of inhibition, episodic memory, and working memory capac-
ity, respectively. The logistic HB13 model has S · n + (3 · (C +
1)) + z parameters, where S is the number of unconstrained
HB13 parameters, C is the number of cognitive variables in
each bias function (three, in our case), the 1 accounts for the
constant terms in each bias function, and z is the number of
parameters that were simplified to a constant. Thus, the num-
ber of parameters in the logistic HB13 model was 2 · 60 + (3 ·
(3 + 1)) + 8 = 140.

Model selection for the older-adult sample We compared the
previously described four candidate models (general multino-
mial, unconstrained HB13, simplified HB13, and logistic
HB13) to identify which model provided the best approxima-
tion of the true model underlying our older-adult data. The
AIC values and Akaike weights for each of the models are
shown in Table 4. The model associated with the smallest AIC
value and the highest Akaike weight was the logistic HB13
model. In fact, the probability estimate that the logistic HB13
model was the best of our four candidate models was very
close to 1. Also note that the AIC values decrease with each
model introduced, indicating that the models became progres-
sively better in terms of the compromise between descriptive
accuracy and parsimony as we progressed through our model
hierarchy.

Hypothesis testing Using the logistic HB13 model, we tested
our primary hypotheses regarding the role of cognitive func-
tioning in the underlying HB processes. This analysis in-
volved bootstrapping the 95% confidence intervals for the
beta coefficients on each cognitive covariate for each of the
core parameters.4 As is shown in Table 5, our analyses of older
adults revealed that episodic memory was the only significant
predictor of rCk, β = 0.06, 95% CI = [0.02, 0.10], pb < .001,
such that one standard deviation increase in episodic memory
scores was associated with a 3.6% increase in the mean
estimated rCk. Yet both episodic memory, β = 0.07, 95% CI
= [0.03, 0.11], pb < .001, and inhibition, β = –0.02, 95% CI =
[–0.04, –0.01], pb < .001, were significant predictors of rEk:
One standard deviation increase in episodic memory scores
was associated with a 4.3% increase in the mean estimated
rEk, and one standard deviation increase in inhibition scores
was associated with a 7.9% decrease in mean estimated rEk.
Furthermore, in the older-adult sample, working memory
capacity was a marginally significant predictor of rEk, β =

0.06, 95% CI = [–0.003, 0.13], pb = .056, such that one
standard deviation increase in working memory scores was
associated with a 1.9% increase in mean estimated rEk. The
significant contribution of inhibition and the marginally sig-
nificant contribution of working memory capacity to rEk but
not to rCk suggest that these abilities explain the reduction in
recollection rates due to the presentation of the CJ (i.e., recol-
lection bias). Finally, inhibition was the only significant pre-
dictor of bk, β = 0.04, 95% CI = [0.02, 0.07], pb < .001, such
that one standard deviation increase in inhibition scores was
associated with a 11.5% increase in mean estimated bk.

Younger-adult model tests

Goodness-of-fit of the unconstrained HB13 model with re-
spect to the general multinomial model Following the same
model hierarchy as in older adults, we began by assessing the
goodness-of-fit fit of the unconstrained HB13 model in our
younger-adult comparison group. We based our analyses on
the 50-item data set that provided an acceptable model fit in
our older-adult group. For n = 62 participants, the uncon-
strained HB13 model has 13 · 62 = 806 parameters, and the
general multinomial model has 18 · 62 = 1,116 parameters.
With an alpha level of .01, N = 3,085 (62 participants · 50
items – 15 missing responses), and df = 310, we had adequate
power (>.99) to detect moderate deviations (w = .3) from the
general multinomial model, but insufficient power (.14) to
detect small deviations (w = .1). On the basis of 500
bootstrapped samples, using the 50-item data set we found
an acceptable model fit, ΔG2(310) = 287.49, pb = .82.

Simplification of the unconstrained HB13 model Rather than
conducting separate heterogeneity tests for younger adults, we
assessed whether the simplified HB13model that we defined for
older adults was also an acceptable model for younger adults.
This was necessary to avoid varying results across age groups
due to different model specifications. The simplifiedmodel has S
· n + z parameters, where S denotes the number of unconstrained
parameters and z denotes the number of parameters that were
simplified to constants. Thus, the younger-adult simplified
HB13 model had 5 · 62 + 8 = 318 parameters. With an alpha
level of .01, N = 3,085, and df = 488, we had adequate power
(>.99) to detect moderate deviations (w = .3) from the uncon-
strainedHB13model, but insufficient power (.09) to detect small
deviations (w = .1). As expected, on the basis of 500
bootstrapped samples, the simplified HB13 model for the
older-adult sample also fit the younger-adult data, ΔG2(488) =
425.43, pb = .02. Thus, we used the samemodel specification for
the simplified HB13 model in older and younger adults.

Logistic HB13 model We then introduced the logistic HB13
model by replacing the unconstrained core parameters bk, rCk,
and rEk in the simplified HB13 model with logistic functions of

4 Given that general slowing of processing speed often accounts for age-
related changes in other cognitive functions (Salthouse, 2000), we con-
ducted an additional analysis to identify whether our findings held after
including a measure of processing speed (the Digit Symbol Coding
subtest of the WAIS-III). The findings from our main analyses held,
suggesting that processing speed did not account for the effects of the
cognitive covariates on the core parameters. Furthermore, processing
speed did not significantly contribute to the core HB processes.
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inhibition, episodic memory, and working memory capacity,
respectively. The logistic HB13 model has S · n + (3 · (C + 1))
+ z parameters, where S is the number of unconstrained HB13
parameters, C is the number of cognitive variables in each bias
function, the 1 accounts for the constant terms in each bias
function, and z is the number of parameters that were simplified
to a constant. Thus, the number of parameters in the younger-
adult logistic HB13 model was 2 · 62 + (3 · (3 + 1)) + 8 = 144.

Model selection for the younger-adult sample We compared
our four candidate models following the same rationale as for the
older-adult data set. TheAIC values andAkaikeweights for each
of the models are summarized in Table 4. Again, the model
associated with the smallest AIC value and an Akaike weight
close to 1 was the logistic HB13 model. We also replicated the
decrease in AIC values from the most complex model (i.e., the

general multinomial model) to the least complex model (i.e., the
logistic HB13 model) for the younger-adult sample. Thus, the
logistic HB13 model provided the best balance between model
fit and parsimony for both the older and younger adults.

Hypothesis testing In line with these model selection results, we
tested our primary hypotheses regarding the role of cognitive
functioning in the underlying HB processes using the logistic
HB13 model. As is shown in Table 5, on the basis of 500
bootstrapped samples, the 95% confidence intervals for the beta
coefficients revealed that none of the cognitive covariates signif-
icantly predicted parameters bk, rCk, or rEk in the younger adults.
Nonetheless, the pattern of effects of the cognitive covariates on
theHB parameters was similar to that observed in older adults. In
fact, the directions of all but one of the six beta coefficients
required to predict recollection of the control (rC) and experi-
mental (rE) itemswere the same across age groups. The picture is
a bit more confusing for reconstruction bias b, where only the
direction of the beta coefficient for episodic memory was the
same across age groups. Most likely, the effects of inhibition and
working memory capacity on bwere very weak, or even absent,
in younger adults, so that sampling error caused deviations of the
regression coefficient estimates in the unexpected directions. The
lack of statistical significance of all coefficients for younger
adults is consistent with this explanation.

Discussion

We have proposed a novel logistic HB13 multinomial model
to assess the cognitive abilities that contribute to the underly-
ing HB processes in older and younger adults. Our model
selection analysis indicated that, given our data and a set of
four candidate models (see Table 4), the logistic HB13 model
was clearly the best approximation to the true model underly-
ing the data for both the older- and younger-adult groups, and
it was the model that provided the best balance between model
accuracy and parsimony. Consistent with our predictions, our
findings revealed that in older adults, (1) individuals with
better episodic memory have better recollection of their OJ

Table 4 AIC values and Akaike weights for each of the four candidate hindsight bias (HB) models by age group

Model AICq Δq (AIC) wq (AIC)

Older Younger Older Younger Older Younger

General multinomial 12,868 13,321 841 909 <.001 <.001

Unconstrained HB13 12,577 12,988 550 577 <.001 <.001

Simplified HB13 12,059 12,438 32 26 <.001 <.001

Logistic HB13 12,027 12,411 0 0 >.99 >.99

AIC =Akaike information criterion;Δq(AIC) = [AICq –min(AIC)];wq(AIC) = roundedAkaike weights interpreted as the probability thatModel q is the
best model given the data set and set of candidate models

Table 5 Model tests for the logistic HB13 model by age group

Cognitive Function Coefficient pb (two-tailed)

Older Younger Older Younger

Recollection: Control (rCk)

αC0 –1.39 –0.47

βC1 (Inhibition) –0.01 –0.01 .32 .12

βC2 (Episodic memory) 0.06 0.01 <.001 .81

βC3 (Working memory) 0.03 0.001 .33 .84

Recollection: Experimental (rEk)

αE0 –1.34 –0.77

βE1 (Inhibition) –0.02 0.002 <.001 .80

βE2 (Episodic memory) 0.07 0.001 <.001 .96

βE3 (Working memory) 0.06 0.04 .06 .29

Reconstruction Bias (bk)

αb0 –1.49 0.54

βb1 (Inhibition) 0.04 –0.02 <.001 .22

βb2 (Episodic memory) –0.004 –0.06 .96 .27

βb3 (Working memory) 0.08 –0.04 .24 .62

p values (denoted pb) for the cognitive covariate tests are based on
bootstrapping the 95% confidence intervals for the beta coefficients on
each cognitive covariate for each of the core parameters
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in the absence of outcome knowledge, (2) individuals with
better episodic memory and inhibitory control and higher
working memory capacity have better recollection of their
OJ in the presence of outcome knowledge, and (3) conditional
on a failure to recall their OJ, individuals with better inhibitory
control are less likely to be influenced by outcome knowledge
when reconstructing their forgotten OJs (i.e., reconstruction
bias). In younger adults, descriptively, most of the regression
coefficients for the cognitive covariates were in the same
direction as those of older adults, but none of the effects
attained statistical significance.

Ours is the first study to model interindividual variation in
the underlying processes that contribute to HB. This is an
important advancement over prior applications of the HB13
multinomial model, which estimated a fixed set of 13 param-
eters for the entire sample (Erdfelder & Buchner, 1998). The
approach presented in this article is a variation of Klauer’s
(2010) latent-trait model that can be easily implemented and
adapted to any experimental paradigm. The primary differ-
ence between Klauer’s model and our logistic model is that the
former requires the assumption of joint distribution of the
model parameters and covariates, whereas the latter only
requires a distributional assumption about the error in
predicting the model parameters from the covariates.
Furthermore, in our logistic model we assume that the error
term associated with the model parameters is logistically
rather than normally distributed. Subsequently, we arrive at a
model in which the processes (e.g., reconstruction bias, bk) are
modeled as a logistic function of covariates rather than an
ogive function. In Appendix 1, we demonstrate that replacing
logistically distributed errors with normally distributed errors
does not change the substantive conclusions. The other dif-
ference is in the estimation method: Whereas Klauer used a
Bayesian approach, we use a maximum likelihood approach.
The latter approach requires fewer distributional assumptions
and less computational effort, and is easier to implement.

Given the large interindividual variation in cognitive func-
tioning in older adults, our primary interest was in modeling
individual differences in the underlying HB processes in an
older-adult population; however, we also included a younger-
adult comparison group to assess whether the findings would
generalize to this age group. For both age groups, we followed
a series of model steps to arrive at our final logistic HB13
model. One of our model steps involved examining whether
there was significant heterogeneity in the HB13 parameters.
Given that we would expect older adults to have the largest
variability in their underlying processes, we performed the
heterogeneity tests on this age group. We then demonstrated
that the resulting model was also acceptable for our younger-
adult group. The results of the heterogeneity tests suggest that
ancillary parameters gl1k and gg1k might be conceived of as
heterogeneous. These parameters represent probabilities of
reconstructing ROJs that deviate from the CJ in the direction

of the OJ. Although this “partial OJ memory” does not suffice
for a perfect recollection (ROJ = OJ), it allows for a recon-
structed ROJ that is “close” to the OJ. Our findings thus
indicate that participants differ in their ability to generate
good, unbiased reconstructions that are close approximations
of the OJ. With regard to the core parameters, heterogeneity
tests revealed that parameters bk, rCk, and rEk were heteroge-
neous, whereas parameter ck was homogeneous. Given that
reconstruction bias is one of the primary contributors to HB,
we expected individual variation in the frequency with which
individuals shift their ROJ toward the CJ. Our finding that
participants differed in their ability to recollect the OJ was also
expected, given the large variation in recall ability in older
adults (e.g., Christensen et al., 1994; Riddle, 2007).
Furthermore, the finding of homogeneity in CJ adoptions
was not surprising, given prior reports of a low probability
of CJ adoptions in adults (e.g., Bayen et al., 2006; Bernstein
et al., 2011).

In our final model step, we used the logistic HB13 model to
test whether variability in cognitive functioning explained indi-
vidual variation in the core HB processes in older and younger
adults. In older adults, as expected, better episodic memory
predicted better OJ recall in the absence of outcome knowledge
(rCk). Moreover, better episodic memory and inhibitory control
each predicted better OJ recall in the presence of outcome
knowledge (rEk). It is also noteworthy that working memory
capacity was a marginally significant predictor of recollection
rates in the presence (pb = .056), but not the absence (pb = .33), of
outcome knowledge. The significant contribution of inhibition
and the marginally significant contribution of working memory
capacity to rEk but not to rCk suggest that the ability to recall a
prior judgment in the presence of new knowledge depends on
one’s ability to suppress irrelevant information (i.e., CJ), and
potentially depends on one’s ability to discriminate multiple
pieces of information in mind during recall. Thus, older adults
with poorer inhibitory control and lower working memory ca-
pacity may be more susceptible to recollection bias.

Our finding that inhibition contributes to recollection bias in
older adults is consistent with Erdfelder et al.’s (2007) finding
and with the hypothesis that inhibition would be needed to
suppress outcome knowledge so that it does not interfere with
recall of the OJ (e.g., Bayen et al., 2007; Groß & Bayen,
in press). One mechanism may be that older adults with poor
inhibition are unable to suppress the CJ, and consequently this
information alters their memory representation of the OJ. This
would be consistent with adaptive learning or immediate out-
come assimilation theories, which postulate that HB results
from outcome knowledge automatically updating one’s knowl-
edge base (e.g., Fischhoff, 1975; Hoffrage et al., 2000). An
alternative possibility is that the CJ interferes with rather than
changes one’s memory representation of the OJ. This explana-
tion is consistent with the relative-trace-strength hypothesis
proposed by Hell et al. (1988), which posits that weaker
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memory trace strength of the OJ predicts a larger recollection
bias. Although the present study implicates inhibition in recol-
lection bias in older adults, further research will be needed to
tease apart the precise role that inhibition plays in this process.

Our finding that working memory capacity was a marginally
significant contributor to recollection bias in older adults is
consistent with the finding from Bayen and colleagues’ (2006,
Exp. 2) study, which demonstrated that older adults exhibited a
significant recollection bias when they were shown the CJs
immediately prior to the ROJ stage and were instructed to
remember them for a later memory test. Presumably, the in-
struction to encode the CJs taxed participants’workingmemory,
which decreased overall working memory capacity and
increased recollection bias. Calvillo (2012) also found evidence
for poorer working memory capacity contributing to a greater
overall magnitude of HB (but see also Nestler et al., 2008).
However, because the effect of working memory capacity fell
just short of statistical significance (pb = .056) in the present
study, future studies should clarify the role of working memory
capacity in older adults’ recollection biases.

With regard to reconstruction bias, our findings revealed
that better inhibitory control predicted less reconstruction bias
in older adults, suggesting that the accuracy of reconstructive
processes depends on the ability to suppress outcome knowl-
edge that might otherwise influence the reconstruction pro-
cess. This finding is compatible with Bayen and colleagues’
(2006, 2007) inhibitory-deficit explanation of increased sus-
ceptibility to HB in older adults. Bayen and colleagues
reviewed the inhibitory-deficit theory of cognitive aging
(Hasher & Zacks, 1988), which posits that older adults have
difficulty inhibiting task-irrelevant information. As a result,
this information gains access to working memory and, if not
suppressed, interferes with task-relevant performance.
Applying this to the memory judgment paradigm, Bayen
and colleagues proposed that older adults are more susceptible
to HB because they are unable to suppress the CJ (task-
irrelevant information) once it gains access to working mem-
ory, resulting in this information biasing the reconstruction
process. Thus, we have provided further evidence for the role
of inhibition in the reconstruction stage of HB and demon-
strated that inhibition is more important in this stage than both
episodic memory and working memory capacity. Neither of
the latter abilities contributed significantly to explaining indi-
vidual variability in reconstruction bias.

In younger adults, with the exception of the effects of inhi-
bition on the rEk and bk parameters and the effect of working
memory capacity on the bk parameter, the pattern of effects of
the cognitive covariates on the HB parameters was similar to
that observed in older adults; however, none of these effects
reached statistical significance. Although the direction of the
effects was often in agreement across age groups, the question
remains why we obtained strong effects in older adults and
weaker effects in younger adults. We propose two possible

answers to this question: (1) There is little variability in HB in
younger adults, and/or (2) there is little variability in cognitive
functioning in younger adults. To test the first possibility, we
conducted post-hoc heterogeneity tests on each of the core HB
parameters in younger adults. On the basis of 100 bootstrapped
samples, our findings revealed that parameter rCk [G2(61) =
115.69, pb < .001], parameter rEk [G2(61) = 136.85, pb <
.001], and parameter bk [G2(61) = 83.99, pb < .001] were
heterogeneous. Thus, these findings do not support the first
possibility. To test for the second possibility, we conducted F
tests to assess the equality of variances of the cognitive covar-
iates in older and younger adults. The variances in older adults
were about twice as large as those in younger adults.
Subsequently, we rejected the null hypothesis that the variances
were equal across age groups for inhibition [F(59, 61) = 2.86, p
< .001], episodic memory [F(59, 61) = 1.87, p = .01], and
working memory [F(59, 61) = 1.55, p = .046]. Thus, we believe
that the weaker effects in our younger-adult logistic HB13
model were most likely due to younger adults having less
variability in cognitive functioning, as compared to older adults.
Indeed, our younger-adult sample was composed of a high-
functioning sample of university students. Future research
should assess the cognitive mechanisms underlying the HB
processes in younger adults while using a more representative
sample of the general population of younger adults, which
would likely increase variation in cognitive functioning.
Another possibility for future research will be to investigate
other individual-difference variables (e.g., additional cognitive
variables or personality factors) thatmight explain heterogeneity
in younger-adult HB processes that were not addressed here.

Taken together, the present findings advance our under-
standing of HB by identifying why older adults are more
prone to it. We revealed that older adults with poorer inhibi-
tory control, and potentially those with lower working mem-
ory capacity, are more likely to forget their original predictions
in the presence of outcome knowledge. Perhaps poorer ability
to suppress the CJ results in this information interfering with
retrieval of the OJ. Subsequently, these individuals must re-
construct their forgotten original predictions. During this re-
construction process, older adults with poorer inhibitory con-
trol are more likely to rely on outcome knowledge to guide
this reconstructive process. Thus, older adults with poor in-
hibitory control may be especially vulnerable to HB. Given
the abundance of complex and potentially risky financial,
health, housing, and safety decisions encountered in later life,
combined with the recent social trend to maintain indepen-
dence in decision-making as we age (Peters et al., 2007), it
will be imperative to determine the extent to which proneness
to HB impacts real-world decisions.

In summary, we investigated age differences in HB and
extended the MPT model of HB to identify the relationship
between cognitive functioning and the underlying HB pro-
cesses. The advantages of our logistic model are that it is
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easily implemented and can incorporate individual differences
in the underlying processes without ascribing to any distribu-
tional assumptions of the model parameters. In additional
analyses, we demonstrate in Appendix 1 that our findings
hold when we assume that the error terms in the underlying
latent variables are normally distributed rather than logistical-
ly distributed. Future research will be needed to elucidate the
mechanisms underlying individual variation in HB processes
in younger adults.
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Appendix 1: Additional analyses using a normally
distributed error term

To test whether our results would hold when we assumed that
the error terms of the underlying latent variables (e.g., bkm

* )
were normally rather than logistically distributed, we
reconducted our primary analyses with older adults and youn-
ger adults using an ogive link function. We modeled the core
parameters (bk, rCk, rEk) as the following ogive functions of the
cognitive covariates:

bk ¼ Φ αb þ βb1X1k þ βb2X2k þ…þ βbCXCkð Þ
rCk ¼ Φ αcon þ βcon1X1k þ βcon2X2k þ…þ βconCXCkð Þ
rEk ¼ Φ αexp þ βexp1X1k þ βexp2X2k þ…þ βexpCXCk

� �; ðA1Þ

where α and βc, c = 1, . . . , C, are the parameters to be
estimated, Xck, c = 1, . . . , C, denotes the value of participant k
on the variable Xc, and Φ(.) represents the cumulative distri-
bution function of the standard normal distribution. We thus
refer to this model as the ogive HB13 model with core param-
eters bk, rCk, rEk.

Model evaluation

Our model evaluation comparing the AIC values and Akaike
weights for the ogive HB13 model against the remaining three
candidate models (cf. Table 4 above) revealed that the ogive
HB13 model was the preferable model in both age groups. In
older adults, the rounded AIC value for the ogive HB13model
was only slightly worse than the AIC value for the logistic
HB13 model (AIC logistic HB13 = 12,027; AIC ogive HB13
= 12,029). In younger adults, the rounded AIC values for the
ogive HB13 model and the logistic HB13 model were the
same (AIC = 12,412). For both age groups, the probability
estimate that the ogive HB13 model was the best of our four
candidate models was very close to 1. Thus, the ogive model
and the logistic model provide equally good approximations

to our data, and both outperform the other three candidate
models.

Older-adult ogive HB13 model tests

To test whether any of the cognitive variables independently
predicted recollection ability or reconstruction bias in older
adults, we bootstrapped the 95% confidence intervals for the
beta coefficients on each cognitive covariate for each of the core
parameters (rCk, rEk, and bk) in the ogive HB13 model. As is
shown in Table 6, the findings from our logistic HB13 model
held: Episodic memorywas the only significant predictor of rCk,
β = 0.03, 95% CI = [0.01, 0.06], pb < .001; both episodic
memory, β = 0.04, 95% CI = [0.02, 0.06], pb < .001, and
inhibition, β = –0.01, 95% CI = [–0.02, –0.01], pb < .001, were
significant predictors of rEk; working memory capacity was a
marginally significant predictor of rEk, β = 0.04, 95% CI =
[–0.001, 0.07], pb = .10; and inhibition was the only significant
predictor of bk, β = 0.03, 95% CI = [0.01, 0.04], pb < .001.

Younger-adult ogive HB13 model tests

To test whether any of the cognitive variables independently
predicted recollection ability or reconstruction bias in younger
adults, we bootstrapped the 95% confidence intervals for the
beta coefficients on each cognitive covariate for each of the
core parameters (rCk, rEk, and bk) in the ogive HB13model. As
is shown in Table 6, we once again replicated the findings
from our logistic HB13 model: On the basis of 500

Table 6 Model tests for the ogive HB13 model by age group

Cognitive Function Coefficient pb (two-tailed)

Older Younger Older Younger

Recollection: Control (rCk)

αC0 –0.86 –0.29

βC1 (Inhibition) –0.003 0.01 .38 .84

βC2 (Episodic memory) 0.03 –0.01 <.001 .35

βC3 (Working memory) 0.02 0.004 .32 .71

Recollection: Experimental (rEk)

αE0 –0.83 –0.48

βE1 (Inhibition) –0.01 0.02 <.001 .88

βE2 (Episodic memory) 0.04 0.001 <.001 .89

βE3 (Working memory) 0.04 0.001 .10 .50

Reconstruction Bias (bk)

αb0 –0.92 0.31

βb1 (Inhibition) 0.03 –0.03 <.001 .21

βb2 (Episodic memory) –0.0002 –0.01 .92 .24

βb3 (Working memory) 0.05 –0.04 .38 .56

p values (denoted pb) for the cognitive covariate tests are based on
bootstrapping the 95% confidence intervals for the beta coefficients on
each cognitive covariate for each of the core parameters
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bootstrapped samples, the 95% confidence intervals for the
beta coefficients revealed that none of the cognitive covariates
significantly predicted bk, rCk, or rEk. Taken together, these
results suggest that replacing logistically distributed errors
with normally distributed errors does not change the substan-
tive conclusions.

Appendix 2: Aggregate analysis using the HB13 model

We analyzed the data using the HB13 multinomial model
developed by Erdfelder and Buchner (1998). To assess model
fit, we compared the aggregate HB13 model against the
general multinomial model for 2 · 10 data categories using
parametric bootstrapping. In accordance with prior work (e.g.,
Bayen et al., 2006), we set an alpha level of .01 for the model
fit test because we did not want to reject a model that only
slightly differed from the comparison model. The model eval-
uation was based on 6,040 data points (122 participants · 50
items – 60 missing responses). Power analysis indicated that
we had high power (.99) to detect even small deviations (w =
.1; Cohen, 1988) from the general multinomial model. On the
basis of 500 bootstrapped samples, we found an acceptable
model fit, G2(10) = 31.27, pb= .01.

Table 7 presents the results of the parameter tests across age
groups, and Table 8 reports the parameter estimates and their
standard errors by age groups. We used the conventional alpha
level of .05 to test for statistical differences in the parameters.
As expected, on the basis of 500 bootstrapped samples, our
analysis revealed significant age differences in overall recol-
lection ability—that is, parameters rC and rE. In comparison to
younger adults, older adults had poorer recollection of the OJs

for both control and experimental items. Furthermore, older
but not younger adults demonstrated a significant recollection
bias, defined as poorer recollection of the OJ for experimental
as compared to control items. Descriptively, the recollection
bias was slightly larger in older adults (.04) than in younger
adults (.03). Bayen et al. (2006) also observed recollection
biases for both younger and older adults, but the bias was not
statistically significant for younger adults and fell short of
statistical significance for older adults. Perhaps our
significant recollection bias finding in older adults was due
to our relatively large sample of 62 younger and 60 older
adults, which was more than double the sample of Bayen et al.
(2006; 26 younger and 26 older adults).

Older adults demonstrated a larger reconstruction bias than
did younger adults; however, this difference did not reach
statistical significance (pb = .23). Although Bayen et al.
(2006) found a significant age difference in reconstruction
bias, this difference did not reach statistical significance in
Bernstein et al. (2011, p = .18). Nevertheless, in all three
studies, there was at least a descriptive trend toward older
adults demonstrating larger reconstruction bias than did youn-
ger adults. Finally, we observed a significant age difference in
parameter c, with older adults demonstrating significantly
more CJ adoptions than younger adults. This is consistent
with Bayen et al.’s (2006, Exp. 2) finding of increased CJ
adoptions when the CJ is accessible during ROJ. Overall, our
findings of age differences in the core HB parameters are
generally consistent with those of prior work.

Appendix 3: List of questions (and correct answers
in metric units) used in the memory judgment task

1. At what temperature does copper melt? (2,415 Celsius)
2. How high is the Statue of Liberty including its base? (93

meters)
3. What year did the mutiny on the Bounty occur? (1790)
4. What is the distance between New York and Los

Angeles (by road)? (4,546 kilometers)
5. In what year was the monkey wrench invented? (1841)

Table 7 Parameter tests using the aggregate HB13 model

Null Hypothesis ΔG2 pb df

Across-Age-Group Tests

rC constant across age groups 45.31 <.001 1

rE constant across age groups 59.71 <.001 1

b constant across age groups 1.37 .23 1

c constant across age groups 5.04 <.001 1

Within-Age-Group Tests: Younger Adults

rC = rE 2.77 .11 1

b = 0 56.24 <.001 4

Within-Age-Group Tests: Older Adults

rC = rE 6.68 .001 1

b = 0 76.08 <.001 4

p values (denoted pb) are based on 500 bootstrapped samples. rC =
probability of recalling the original judgment (OJ) for control items;
rE= probability of recalling the OJ for experimental items; b = probability
of reconstruction bias

Table 8 HB13 model parameter estimates (and standard errors) by age
group

Parameter Parameter Estimate (Standard Error)

Older Younger

rC .25 (.01) .36 (.01)

rE .21 (.01) .33 (.01)

rC – rE .04 .03

b .42 (.04) .35 (.04)

c .01 (.01) <.001 (.01)
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6. In what year was the harmonica invented? (1821)
7. How long is the Rhine River? (1,320 kilometers)
8. What year did the Hundred Years’ War begin? (1339)
9. What year was the lightning rod invented? (1752)

10. How long is the Great Wall of China? (3,460 kilometers)
11. What year were X-rays discovered? (1895)
12. At what speed must wind blow to be classified as a

Moderate Gale Force? (51 kilometers per hour)
13. What is the average depth of the Pacific Ocean? (3,940

meters)
*14. At what temperature does tin melt? (2,930 Celsius)
15. On average, how many days is a female elephant preg-

nancy? (631 days)
16. How long is the Amazon River? (6,556 kilometers)
17. How long is the Mississippi River? (3,779 kilometers)
18. What year did William Herschel discover the planet

Uranus? (1781)
19. In what year was Jane Austin’s Pride and Prejudice first

published? (1813)
20. What is the average temperature of the Antarctic winter?

(-68 Celsius)
21. What is the highest temperature ever measured on Earth?

(57 Celsius)
22. What percentage of the world’s populationwas under the

age of five in 1995? (7.7%)
23. What year was Leonardo da Vinci born? (1452)
24. How long is the world’s longest bridge? (38.42

kilometers)
25. What year did Sir James Dewar, an English chemist,

invent the thermos flask? (1873)
26. When was the first reflecting telescope developed?

(1671)
27. How many carats is the world’s largest reported dia-

mond? (3,106 carats)
*28. What is the official land speed record for a land vehi-

cle? (1,019 kilometers per hour)
29. How many days does the planet Mercury take to make

one trip around the sun? (88 days)
30. How long is an international nautical mile? (1,852

meters)
31. What percentage of the world’s population lived in

Africa in 1994? (12.4%)
32. How many plays did William Shakespeare write? (37

plays)
33. When travelling 97 kilometers per hour in a car, how

much room should you allow yourself to brake? (83
meters)

34. What is the distance between Tokyo and Chicago (by
air)? (10,137 kilometers)

35. What year was the parking meter invented? (1935)
36. What year was radiotelegraphy invented? (1899)
37. What year did Leonardo da Vinci create Mona Lisa?

(1503)

*38. In what year was Harvard University founded? (1686)
39. What year did Franz Joseph I, the emperor of Austria,

die? (1916)
40. What year did Albert Einstein formulate the theory of

relativity? (1903)
41. What is the diameter of the planet Mars? (6,787

kilometers)
42. How high is the highest point on Mount Kilimanjaro?

(5,895 meters)
43. What year were the first modern-day Olympic games

celebrated? (1896)
44. What percentage of the world’s population lived in

Europe in 1994? (9%)
45. How many muscles does the human body have? (639

muscles)
46. What percentage of the human body is composed of

nitrogen? (8.5%)
47. What year was the first mailbox invented? (1653)
48. When was slavery officially abolished in the United

States? (1865)
49. How many films did Alfred Hitchcock direct? (56 films)
50. In what year was William Shakespeare’s The Tragedy of

King Lear first published? (1608)
51. In what year was Socrates born? (470 BC)
52. In what year was Daniel Defoe’s “Robinson Crusoe”

first published? (1719)
53. What year was the mechanical loom invented? (1785)
54. How many detective books did Agatha Christie write?

(67 books)

*Note: The items marked by an asterisk were excluded
from the analyses because they violated the model’s symmetry
assumption.
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